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Chapter 1

Resource allocation and optimization

Economics has been defined as the science of allocating scarce resources
among competing ends. Much of the microeconomic theory encountered
in a first semester graduate course is concerned with the static allocation
problem faced by firms and consumers. Techniques of constrained opti-
mization, in particular the method of Lagrange multipliers, are employed
in developing the theory of the firm and the consumer.

The optimal harvest of renewable resources or extraction of exhaust-
ible resources is inherently a dynamic allocation problem; that is, the firm
or resource manager is concerned with the best harvest or extraction rate
through time. It turns out that the method of Lagrange multipliers can
be extended to intertemporal or dynamic allocation problems in a relatively
straightforward fashion. This “discrete-time” extension of the method of La-
grange multipliers serves as a useful springboard to the “continuous-time”
solution of dynamic allocation problems via the maximum principle. The
method of Lagrange multipliers and its various extensions reduce the ori-
ginal optimization problem to a system of equations to be solved. Solving
this system of equations, unfortunately, can often be exceedingly difficult,
especially for dynamic problems. There are also technical problems concern-
ing sufficiency conditions for the solutions so obtained (and also pertaining
to the existence of a solution to the given problem). In these notes we will
normally consider problems which are simple enough that these difficulties
are minimized.

Before presenting the dynamic techniques we will briefly review the
method of Lagrange multipliers within the context of allocating scarce re-
sources among competing ends at a single point in time.

1.1 Constrained optimization
and the method of Lagrange multipliers

In resource economics as in other fields of economics, we often encounter

constrained optimization problems. The general form of such problems is

maximize V(zy,...,%,)

(1.1)

subject to  (z,...,2,) €A
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where V() is a given objective (or value) function of n decision variables
Zy,-..,%, which are required to be in some given constraint set A.

In the case of a static optimization problem, the decision variables z;
are real numbers and the constraint set A is a subset of R"—Euclidean
n-space. For dynamic optimization problems, on the other hand, some (or
all) of the decision variables are functions of time ¢ (usually separated into
so-called state variables and control variables). The constraint condition
then typically involves the system’s dynamics, expressed as a system of dif-
ferential or difference equations. Other constraints may also be present.
As before, V/(-) is real-valued, frequently involving integration (or sum-
mation) over time. Dynamic optimization problems will be considered in
Section 1.2.

1.1.1 Static optimization: no constraints
The simplest optimization problem is
maximize V(zy,...,z,) (1.2)
where the decision variables are unconstrained.l The reader is assumed to
be familiar with the first order necessary conditions
v (+)
dz,

2

=0 i=1,...,n  (1.3)

By “necessary” conditions we mean that equations {1.3) must be satisfied
by the maximizing values of z,,..., z, . The conditions (1.3) are not suf-
ficient conditions for a maximum, however (they also pertain to minimal
solutions and to values z; which are neither maxima nor minima). We will
not attempt to delineate sufficient conditions in these notes [see Intriligator
(1971, p 26)], since such conditions often are complicated and of very lim-
ited practical use (but popular with economics professors). If the objective
function V(-) is known to be concave, the necessary conditions (1.3) are
also sufficient.? Note that (1.3) constitutes a system of n possibly nonlin-

1 We shall assume throughout that V (-} is a smooth function; that is, all required partial
derivatives exist.

2 The function V(X) is said to be concave if
V(eX +(1-a)X) > aV(X) + (1 - )V (X)
forall X = (Z1,...,%,), X = (%1,...,%,) and 0< a < 1.
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ear equations in n unknowns z,,...,z,. Thus the optimization problem
has been “reduced” to the solution of n equations. Unfortunately, solving
the system in practice may be almost as difficult as the original optimiza-
tion problem. Numerical algorithms for the solution of such systems are
available in computing centers, but do not always work (see Section 1.6.2
for an example). Frequently a direct optimization algorithm (based on a
direct “search” of the feasible set) will outperform any method based on the
first order necessary conditions.

Nevertheless, insight into economics is often obtained from the necessary
conditions without actually solving them explicitly. For example, if V (-} is
a net benefit function, the statement “marginal net benefit of each input z;
must equal zero” is equivalent to (1.3) and carries economic significance.

1.1.2 Static optimization: equality constraints

Consider next the constrained problem

maximize V(z,y,z)
subject to G(z,y,2) =c¢ (14)
where for simplicity we have only three decision variables z, y,and z. The
equation G(-} = ¢, where ¢ is a known constant, determines a constraint set
in z,y, 2 space, which is in fact a surface, which we will denote by S . The
problem, then, is to determine the largest value of the function V{(z,y,z)
for points (z,y,2) on the surface Sg.
One approach to this problem is first to solve the constraint equation
G(-) = ¢ for one of the variables, say z = h(z,y). The constrained prob-
lem in three variables may be replaced by the unconstrained two variable

problem
maximize V(z,y,h(z,y)) (1.5)

with first order necessary conditions

oV oV dh _
9z 95 9z
oV 3V oh _
9y "9z 5y

0
(L.6)
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Vr=V(zy", %)
isosurface

Figure 1.1 The tangency criterion: if V(-) is maximized on Sg at P* then the
V* isosurface through P* is tangent to Sg.

Differentiating the constraint equation implicitly implies

06 | 2G oh _
dz  dz 0z (1.7)
9G , 3G oh _ '
dy 8z dy
and Equations (1.6) can therefore be written in the form

V,G,-V,G,.=0

(1.8)
V,G, - V,G, =0

where V_ is shorthand for 9V /9z, etc.

Equations (1.8) can be obtained from an alternative geometrical deriva-
tion which gives important mathematical and economic insight. Figure 1.1
shows the solution to (1.4) as it would appear in z, y, z space. The con-
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straint surface is shown as S, . Suppose P* = (z*,y*,2*) is the point on
S¢ for which V{z,y,z) attains its maximum. Consider also the isosurface
of V(-) passing through P*; this is the surface

V(z,y,2) =V(z*,y*, %) (1.9)

After a moment’s reflection, one would conclude that V(z*,y*, 2*) must be
tangent to the constraint surface S,. If it were not, it would either cut
through S, or not touch it at all. In the latter case the constraint is not
satisfied. In the former case there would be a projection of the isosurface on
S and there would be points on S, lying inside and outside the projec-
tion.% Since V = V* on the projection we must have V > V* on one side
(say inside) of the projection and V' < V* on the other side (outside) of
the projection. But V* was by assumption the maximum of V(-) on S.
Therefore no points of S; can have a value V' > V*, which would be a
contradiction. The conclusion: The maximizing isosurface must be tangent
to Sg at P*.
Recall now from calculus that the gradient vector

-
vV =(V,,V,V,) (1.10)

is always perpendicular (normal) to the isosurface V() = constant at any
given point. Two isosurfaces passing through a point P* are therefore
tangent at P* if and only if their gradient vectors have the same direction.
This means that $V = A?G’ for some A # 0. This vector equation
means, in turn, that

V, =G,
V, =G, (1.11)
V,= )G,

at point P*.

Note that, by dividing pairs of equations, (1.11) reduces to the neces-
sary conditions (1.8). Conversely (1.8) implies (1.11).* Equations (1.11),
however, have an appealing symmetry lacking in (1.8). They also generalize
in a nice way, as we shall see.

3 The projection on an isosurface which cuts through Sg might appear as a bent circle
or ellipse in Figure 1.1. Think of the “nose” of some other isosurface lying on the “other
side” of Sg and the projection as a closed contour on Sg.

4 From (1.8) we have V./G, =V, /G, = V,/G,. Call the common value A =V,/G,.
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1.1.3 Lagrange multipliers

It is customary to rewrite Equations (1.11}) in the form

V,—AG, =0
v, - AG, =0 (1.12)
V,~-AG, =0
If we define the expression
L=V(z,y,2) - AG(z,y,2) — ] (1.13)

then Equations (1.12) are also obtained as
L =L =L,=0 (1.14)

The expression L is called the Lagrangian associated with the original con-
strained optimization problem (1.4). The number X is referred to as a La-
grange multiplier. Thus, the critical observation in the development of the
method of Lagrange multipliers was that differentiation of the Lagrangian
expression would lead to the same first order necessary conditions as ob-
tained in the simple “constraint substitution” technique used to transform
an equality constrained problem into an unconstrained problem [i.e., going
from problem (1.4) to problem (1.5)].

Consider now the general optimization problem with multiple equality

constraints
maximize V(zy...,z,)
subject to GJ-(:cl,.. GE,) = ¢, 7=1,...,m (1.15)
The associated Lagrangian is
m
L=V() =Y NIG;()—¢] (1.16)
J=1

Note that each of the m constraints gives rise to a Lagrange multiplier, A 5
By the same sort of tangency argument as before it can be shown that the
following equations are necessary conditions for z,,...,z, to be a solution

to the above optimization problem

oL

oz,

0 i=1,...,n (117
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Explicitly, these equations are

V. 9G; :
ﬁ_z,\jax?:o i=1,...,n (1.18)
k3 1:1 13
We might also note that
oL .
o = G +e =0 J=1...,m  (119)
J

and that when taken together, Equations (1.18) and (1.19) constitute a

system of n+m equations in n+m unknowns: Tiyee Ty AyeeAy, . In

principle this system should have at most a finite number of solutions, one of

which will be the solution to our original optimization problem. In practice,

as we noted earlier, solving this system of equations may be difficult indeed.
Consider the following example

maximize 2z —3y+ z
subject to 2% + y2 +22=9
The Lagrangian for this problem is

L:2a:—3y+z—)\(:cz+y2+z2—9)

with the first order necessary conditions

Z—i=2—-2/\x=0
2—5:—3—2/\y:0
Z—f:l—%\zzo
g—f:—xz-—y2—z2+9:0

The first and second and first and third equations imply y = —3z/2 and
z = «/2; which upon substitution into the constraint equation yields

—3z\2 z\2
2 R — =
i ( 2 ) + (2) 0
which may be solved for z = +3,/2/7 leading to two solutions

2, =3\/2/T=160 y =-9/V/14=—-241 z; = 3/v/14 = 0.80
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V*=11.22=2z-3y+2

6+ isosurface
5..
4T 2+ +2=9
34— constraint set
/
/2t
// 1K \
\—1-2-3\-4-5 -6-7
1 + 1 1 } } i
/ A+ y
[ 1 J};?A___ (21,31, 21) = (1.60, —2.40, 0.80)
[2 f————= Z
-
3 —

Figure 1.2 Depiction of the problem: maximize 2r — 3y + 2z, subject to
2%+ y? + 2% = 9, which has a solution at (z1,y1,21) = {1.60,~2.41,0.80} .

and
Ty = —3//2/7T=-1.60 Y, =9/V14 =241 2y = —3/+/14 = —0.80
We note, however, that
Vizy,yy,2) =42/V14 = 11.22
V(2g, 9y, 2y) = —42/v/14 = —11.22

Thus, the maximizing point is (zy,v;,2;), while (z,,9,, 2,) is a minimizing
point. The problem and solution are depicted in Figure 1.2.

1.1.4 Economic interpretation

The Lagrange multipliers X j Wwere not part of the original optimization
problem. In the above example, for instance, we eliminated A and then
forgot about it. But Lagrange multipliers do have an important economic
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interpretation.

Clearly the solution to the general problem (1.15) will depend upon the
values of the parameters ¢;,...,c,, in the constraint equations G’j(~) =cj,
7=1,...,m. In fact we may explicitly state this dependence as

z; = z;(cy,...,0,) (1.20)

If the optimal values for the decision variables depend on the parameters
then so does the value of the objective function. Consider

- k=1,...,m  (1.21)

From Equations (1.18) we know

v 9G;
—= Do = (1.22)
J=1
and thus
2% " il an axi
ﬂ_;<.zl’\f55:>8—c; k=1,...,m  (1.23)
= Jj=

Finally, differentiating the constraint equation GJ-(-) = ¢, with respect to

J
¢t » we have

Z 0G0z, o _[1 k=7 (1.24)
dz; ¢y, %k =0 if k#j ‘
Hence we find that m
A%
7 = Z Aibin =N (1.25)
koD

The Lagrange multiplier A, thus equals the incremental change in value
from an incremental change in the constraint parameter ¢, . In other words,
A represents the marginal value of relaxing the kth constraint. If L
represents the available supply of some input or resource, then Aj Tepresents
the “price” (or value) of the input in terms of V ; hence Ay is often called
the shadow price of the input ¢, .

Consider a resource-based economy which can allocate labor (L) to
harvest timber (T') or fish (F). Assume that the economy exports both
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timber and fish, facing constant world prices denoted P and Pp, respec-
tively. The transformation curve, relating technically efficient combinations
of timber, fish, and labor, is given by

G(T,F;L)=T? 4+ F?/4-L=0

Suppose Pp = $500/metric ton, Py = $1,000/metric ton and L = 1700 is
the number of available hours of labor to be allocated between harvesting
timber or fish. The static optimization problem seeks to maximize the value
of harvest subject to the transformation function; that is

maximize V = 5007 + 1,000F
subject to T2+ F2/4 —1700=0

The Lagrangian expression may be written as
L = 5007 + 1,000F — A(T? + F?/4 — 1700)

and has first order necessary conditions which require

aL
5—]:——500—2)\T—0
L
3F 1,000 — 0.5AF =0
and
L
oL _ _r2_p2 _
3 F?/44+1700 =0

Taking the ratio of the first two equations to eliminate A implies F = 8T.
Substituting this expression for F' into the transformation function yields

T? 4+ 64T2%/4 = 1700
T? =100

and
T=10 F =280 A=25

Thus, the economy should allocate the available labor so as to produce
10 metric tons of timber and 80 metric tons of fish. The marginal value
(shadow price) of an additional unit of labor is $25/hour.?

54 check of the appropriate second order conditions would reveal T = 10, F = 80,
A =25 to be a maximum. Note: L is concavein T and F.
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1.1.5 Static optimization with inequality constraints

Next let us consider the problem

maximize V(z,y,2)
(1.26)

subject to G(z,y,2) < ¢
The constraint set A now consists of all points lying either on the surface
S or one particular side of S5 . There are just two possibilities: (a) the op-
timizing point (z,y,2) lies on one side of S, satisfying the strict inequality
G(z,y,2) < ¢ and 8V /dz = 8V /dy = 8V /dz = 0, or (b) the optimizing
point (z,y,z) lies on S, satisfying the equality G(z,y,2) = ¢ in which
case the Lagrangian conditions apply and dL/dz = dL/dy = 0L/dz =10,
where L =V () = A[G(") — ¢].
The two cases can be combined into a single condition called the Kuhn—
Tucker condition, which is a necessary condition, and may be written as

0L _ 9L _ 3L _ .

9z 9y 9z
L[=0 HG()<e (1.27)
>0 fG()=c

The student should check that this indeed covers cases (a) and (b) above.
A frequently encountered form, equivalent to (1.27) is

oL _ oL _oL _
8z dy 8z
AG()—¢c]=0 (1.28)
A>0

In many applications of constrained optimization in economics the de-
cision variables are required to be nonnegative; ie., >0, y >0, 2> 0.
If problem (1.26) is amended to include nonnegativity constraints then the
Kuhn-Tucker conditions become

(3) -4(3) (5D -1
>0 y>0 2>0 (1.29)
AG()~¢]=0 x>0

The Kuhn—Tucker conditions are readily generalized to the case of T, .
..,x, decision variables (which may be unrestricted or nonnegative in

value) plus inequality constraints Gj(xl, v ,) < ¢j,J =1,...,m. The
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fish

— —
preference direction VV =AVG

F*=80 T P* = (T*, F*) = (10, 80)

V* = 5007 + 1000F = 85,000

10 1

10 200
Tt

Figure 1.3  Optimal production in the timber/fish economy.

student could write out the general Kuhn—-Tucker conditions as an exer-
cise [and compare his or her version with that found in Intriligator (1971),
p. 52)].

To see why A > 0 let us reconsider our timber-fish economy. Sup-
pose the transformation function were expressed as an inequality constraint;
G(T,F;L) = T? 4+ F2/4 — L < 0. This constraint and the isorevenue
line V* = 5007 + 1,000F = 85,000 are drawn in Figure 1.3. The point
P* = (T*,F*) = (10,80) gives the maximum revenue for P, = 500,
Pp = 1,000 on the constraint surface. Higher isorevenue lines would be
parallel but lie to the right of V* and thus unattainable given harvest tech-
nology and available labor.

Recall from calculus that the gradient vector, here ?V = (VT,VF),
which is perpendicular to the contour V = V* also points in the direction
of increasing values of V. Hence both ~V+V and —V_)G point in the same
direction from P* (namely outwards from G(-) < 0 orinwards to V' > V*).
Thus

VV =AVG (1.30)

with A > 0.
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With reference to problem (1.26) and the Kuhn-Tucker conditions as
expressed in (1.27), it is possible for A = 0 if the maximum of V(-) on Sg

is also a local or global mazimum of V(-) in this case VV =0 so that

A =0 in (1.30). This explains why X >0 in (1.27)-(1.29).

1.2 An extension of the method of Lagrange multipliers
to dynamic allocation problems

The method of Lagrange multipliers can be employed in solving dynamic
or intertemporal allocation problems and the discrete-time formulation pro-
vides a convenient introduction to control theory and the maximum princi-

ple, often presented in a continuous-time context. Let

t = 0,1,...,T be the set of time periods of relevance for the dynamic
allocation problem, where ¢ = 0 is the present and t = T is the
terminal (last) period,

z, represent a state variable, describing the system in period ¢,

y, represent a control or instrument variable in period ¢,

V =V/(z,;,9;,t) represent net economic return in period %,

F (zT) represent a final function indicating the value of alternative levels
of the state variable at terminal time T, and

2,1 — z; = f(2;,9;) be a difference equation defining the change in the
state variable from period ¢ to {t+1),t=0,...,T —1.

The reader should note that time has been partitioned into a finite
number of discrete periods, (T + 1) to be exact, although we can allow for
an infinite horizon by letting T — oo. We will restrict ourselves to the
single state, single control variable case for simplicity. The problem may
be readily generalized to I state variables and J control variables. The
objective function V (-} may have the period index ¢ as a variable while the
difference equation does not, thus f(-) is said to be autonomous.

An example of a dynamic allocation problem would be one which seeks to

T-1
maximize Z Ve, y;,t) + F(zp)
{yt} =0

. 1.31
subject to  z, ; —z, = f(z;,y;) 031

Tg=a given
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The objective in (1.31) is to maximize the sum of intermediate values plus
the net value associated with the terminal state z. This must be done
subject to the difference equation describing the change in the state vari-
able over the horizon, assuming =z, = a; that is, the initial condition is
given. The problem becomes one of determining the optimal values for y,,
t=0,1,...,T — 1 which will, via the difference equation, imply values for
z,,t=1,...,T.

We can use the method of Lagrange multipliers by noting that the dif-
ference equation is a constraint equation which serves to define z;.1- The

Lagrangian expression may be written

-1
L= Z{V() + X+ F() =z )+ F() (1.32)
t=0

where ’\t+1 is a multiplier associated with Tyiq- Because there are T such
constraint equations (¢ = 0,...,7 — 1) it is appropriate to include them
within the summation operation.

With no nonnegativity constraints the first order necessary conditions

require:
g_i:%% ,\M%—E;—)zo t=0,....,T—1 (1.33)
%=%+,\t+1(1+a£t')>—,\t=0 t=1,...,T—1 (1.34)
-(_i—LT =-Ap+F'()=0 (1.35)
8ii1:xt+f(.)_zt+1:0 t=0,...,T—1 (1.36)

Most of the partials are straightforward with the exception of (1.34) which
warrants some discussion. In taking the partial of L with respect to z, one
looks at where z, appears in the ¢th term of the summation. This accounts
for the first two expressions on the RHS of (1.34). If, however, one were to
back up to the (¢ —1) term one would also find a —z, premultiplied by A,,
hence the third expression —A, in (1.34).

Rewriting the first order conditions will facilitate their interpretation
and put them in a form more useful when making comparisons to their
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continuous time counterparts. They are rewritten as

(.) f(.)
—_It A ——==0 t=0,1,..., 7T -1 1.37
8yt t+1 8yt ( )

Mp1 = A=~ (a;;(t') + ,\ma;gft')) t=1,...,T-1  (1.38)
2, 1 - %= f() (1.39)

Ap=F'() (1.40)

T, =a (1.41)

Equations (1.37) will typically define a marginal condition that y, must sat-
isfy. However, in the dynamic allocation problem there is a term not found
in static problems. In many problems in resource economics dV (-)/dy, will
have the interpretation of being a net marginal benefit tn period t. This
is consistent with our earlier interpretation. In the dynamic context there
is a second term to be accounted for in determining the optimal y,. This
term, A, ((0f(-)/9y,) explicitly reflects the influence of y, on the change
in the state variable. If an increase in y, reduces the amount of variable
z;,, then this second term reflects an inter-temporal cost, often referred
to as user cost. Less obvious, but perhaps more important, is that in the
optimal solution of the problem /\;‘_H can be shown to reflect the effect
that an increment in z; .y would have over the remainder of the horizon
(t+1,...,T). Thus there is a second cost which must be considered when
undertaking an incremental action today; that is, the marginal losses that
might be incurred over the remaining future.

Equation (1.38) is a difference equation which must hold through time
and relates the change in the Lagrange multiplier to terms involving partials
of z,. This expression can be given a nice, intuitive interpretation within the
context of harvesting a renewable resource and we postpone its discussion
till then. For now it is to be regarded as an equation defining how the
multiplier must optimally change through time.

Equation (1.39) is simply a restatement of the difference equation for the
state variable and Equations (1.40) and (1.41) are referred to as boundary
conditions defining the terminal value of the multiplier sequence ()\T) and
the initial condition on the state variable. Because one condition is an initial
condition and the other is a terminal condition, the boundary conditions are
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described as “split.” ®

Collectively, Equations (1.37)—(1.41) form a system of (3T + 1) equa-
tions in (37T+1) unknowns: y, for t =0,1,...,T—1; 2, for t =0,1,...,T;
and A, for ¢t = 1,...,T. It may be possible to solve the system simulta-
neously for y,, z,, and ), although the structure for a particular problem
may suggest a more efficient solution algorithm than treating it as a fully
simultaneous system. If z,, y,, and A, are restricted to being nonnegative
one must formulate the appropriate Kuhn-Tucker conditions and a solution
might be obtained via a nonlinear programming, gradient-based algorithm.

One way of classifying dynamic problems is on the basis of whether
terminal time and terminal state are given (fixed) or free to be chosen. From
this perspective problem (1.31) would be classified as a “fixed-time, free-
state” problem because the horizon was specified but the terminal state was
not. In a free-time problem the decision-maker must determine the optimal
horizon (i.e., solve for the optimal T).7 A “restricted free-time” problem
may impose a constraint on the length of horizon (e.g., ¢ < T* <t where
t and % are given). An infinite horizon problem, where T — oo, begs the
question of whether or not the solution variables might converge to a set of
values and remain unchanged thereafter. Such a solution is referred to as a
steady or stationary state. If in an infinite horizon problem a steady state

is attained in period 7 then
y, =y, z,=2" and A\, =) forall t > 7 (1.42)

The solution to finite (fixed) horizon problems may also lead to a station-
ary state. For example, it may be optimal for the manager of a mine to
deplete his reserves before the end of a given planning horizon. Finally, a
“terminal surface” might be specified giving the decision-maker some free-
dom in the selection of T' and z, in that he must choose from permissible
combinations given by ¢(T,zy) =0.

614 may seem to be a minor technicality that, whereas the state variable z; is specified
initially by Eq. (1.41), the multiplier A; is specified terminally by Eq. (1.40). However,
this observation is a basic feature of dynamic optimization problems. If A; could also
be specified initially, the system (1.39)-(1.41) could be completely solved by numerical
iteration starting at ¢ = 0. The fact that this cannot be done is what makes dynamic
optimization difficult—and interesting!

7 In continuous-time the optimal horizon might be determined by a differential condition
8L/38T = 0. In discrete-time there would be no differential relationship and the decision-
maker would have to explore horizons of different length, determine the optimal behavior
for each horizon (T), and then compare the sum of net economic returns.
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Space precludes an exhaustive discussion of the nuances of these termi-
nal conditions. The reader is referred to Kamien and Schwartz (1981) for
additional detail.

Because of its importance in many resource management situations we
would like to examine more closely the infinite horizon problem and the

concept of steady state. Consider the problem
oo

maximize Z Viz, ;)

S (1.43)
subject to =, , — 2z, = f(z;,y;) .

Ty =a given

In contrast to problem (1.31) the above presumes that the objective function
has no explicit time dependence (¢ is not an argument of V(-)) and since
T — oo there is no final function.

The Lagrangian becomes

L= Z {V() + ’\t+1(xt + ()~ xt+1)} (1.44)

t=0
with first order necessary conditions including:

V() 310)

Ty, My T 0 (1.45)
v () af()
Ay —Ap=— ( 5z, + A 7z, (1.46)
z,. 0 — 2, = f() (1.47)
which must hold for ¢ = 0,1,.... In steady state, with unchanging values

for y,, z,,and A,, Equations (1.45)-(1.47) become a three equation system

?‘8’7(') + ,\%;‘) —0 (1.48)
ov() , \8f()

fl)=0 (1.50)

which might be solved for the steady-state optimum %*, z*, and \*. By
eliminating A from Equations (1.48) and (1.49) and solving (1.50) for y
as a function of z it is often possible to obtain a single equation in the

variable z*.



18 1. Resource allocation and optimization

If a steady-state optimum exists for an infinite horizon problem, if it is
unique, and can be found from (1.48)—(1.50), then one might ask: “If we
are currently not at the steady-state optimum (i.e., 2, # z*), what is the
best way to get there?” There are essentially two types of optimal approach
paths from z, to z*, assuming z* is reachable from z,. The first type is
an asymptotic approach in which z, — z* as t — oco. The second type is
called the most rapid approach path (MRAP) in which case =z, is driven to
z* as rapidly as possible, usually reaching z* in finite time. To drive z,
to z* as rapidly as possible will often involve a “bang-bang” control where
y, , during the MRAP assumes some maximum or minimum value.

Spence and Starrett (1975) have identified the conditions under which
MRAP is optimal. The conditions for problem (1.43) are that (a) via
constraint-substitution V(z,,y,) must be expressed as an additively sep-
arable function in z, and z, ; and (b) via proper indexing, the problem
may be made equivalent to optimization of EZI w(z,), where w(-) is
quasi-concave. Interestingly enough, there are many intuitive specifications
for dynamic problems which satisfy the necessary and sufficiency conditions
for MRAP to be optimal. If these conditions are met, the solution of the
“bang-bang” approach is a relatively trivial matter. We will give an exam-
ple of such a case, shortly. Before doing so it is appropriate to introduce a
more modern control theory concept: the Hamiltonian.

Look closely at conditions (1.37) to (1.39). These conditions define the
dynamics between the boundary points. The Hameltonian is defined as

}((zt’yt’ /\t+1’t) = V(xt, ypt) + /\t+1f(xt’ yt) (151)

and it is possible to write the first order necessary conditions directly as
partials of the Hamiltonian. First, note that the Lagrangian expression
(1.32) may be written in terms of the Hamiltonian:

T-1

L= {4()+Mulz, — i} + F) (1.52)
£=0

Then the first order conditions become

oL _94() _, t=0,....,T—1 (153)
Jy, Jy,
8L  oX(
L _0X0) |\ =0 t=1...T-1 (L54)

t+1
Oz, Oz,
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oL ’
— == F()Y=0 1.55
5oy r+F() (1.55)
oL ax()
= +zx,—z =0 t=0,...,T -1 (1.56)
a)\i+1 aAt+1 t 1

In their most familiar form these conditions are written as the set

_oH() _ 9x0)

— T, =
0z, LT 0N s
Ap = F'() Ty =a

oX()
Jy,

=0 ’\t+1_)‘t=

The original problem, stated in (1.31), is an example of a subclass of con-
trol problems called open-loop problems. The solution of such a problem
is a control trajectory {y/} determined as a function of time, or in our
discrete-time problem, in tabular form. Knowing {y;} and z; one can use
the difference equation z,,; = z; + f(-) to solve forward for the optimal
trajectory z,, denoted {z;}.

Consider the following problem. As manager of a mine, you are asked
to determine the optimal production schedule {y;} for t =0,...,9. The
mine is to be shut down and abandoned at ¢ = 10. The price per unit of
ore is given as p = 1 and the cost of extracting y, is ¢, = ytz/a:t , where z,
is remaining reserves at the beginning of period ¢.

Net revenue may be written as 7, = py, — ytz/a:t = [1-y,/z,]y, and the
difference equation describing the change in remaining reserves is z,  ;—z, =
~Y,; , where initial reserves are assumed given with z5 = 1,000. Maximiza-
tion of the sum of net revenues subject to reserve dynamics leads to the
Hamiltonian:

H() = [1 - yt/xt] Yy — Apy1¥

with the first order necessary conditions requiring:

IXx()
=1-2y/z,— X, , =0 t=90,...,9
ayt t/t t+1
9H() 2/.2
Aer == T = t=1,...,9
Ty~ =y, t=20,...,9

T, =1,000, A =F'()=0

In this problem there is no final function and any units of z remaining in
period 10 must be worthless. Note that this is a fixed-time free-state prob-
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19 REM PROGRAM 1.1: MINE PROBLEM
2¢ DIM X(11),¥(11),2(11),L(11)
30 L(18) = O

4¢ FOR T = 9 TO ¢ STEP -1

50 Z(T) = (1 - L(T+1)) / 2
60 L(T) = L(T+1) + Z(T)"2
70 NEXT T

80 X(2) = 1000

990 FOR T = @ TO 9

100 Y(T) = X(T) * Z(T)

118 X(T+1) = X(T) - ¥Y(T)

120 NEXT T

139 LPRINT " T X(T) Y(T) L(T)"
140 LPRINT "=--m—erm— e m— e m - m o — - e s oo mem o — o — oo — s m e "
15¢ LPRINT 0,X(0),Y(9)

160 FOR T = 1 TO 10

179 LPRINT T,X(T),Y(T),L(T)

180 NEXT T

190 END
T X(T) Y(T) L(T)
4] 1000 138.9018
1 861.0982 129.3185 .7221965
2 731.7798 119.6851 .6996428
3 612.0947 109.993 6728931
4 502.1016 100.2317 .6406012
5 401.8699 90.38798 .6007513
6 311.482 80.44653 .558163
7 231.8354 70.39361 .4834595
8 160.6418 60.24068 .390625
g 100.4011 590.20057 .25
10 50.20057 2 0

Program 1.1  Solution and algorithm to the mine manager’s problem.

lem and that the first order conditions represent a system of 31 equations
in 31 unknowns: y, for t =0,1,...,9, z, for t =0,1,...,10, and A, for
t =1,2,...,10. Solution of this problem is most easily accomplished by
defining z, = y,/=,. Evaluating the d¥(-)/0y, at t =9 implies z5 = 0.5
(since Ay = 0). Evaluating the expression for A, ; — A, at ¢ =9 implies
Ag = (2g)2 = 0.25. Knowing A\ we can return to 9¥(-)/dy, to solve for
zg, then back down to the second equation for Ag, and so forth. The last
step in the recursion gives us z; = 0.1389 and A, = 0.7415. Knowing that
z, = 1000 we can solve for y; = 2525 = 138.90 and z; = 75—y, = 861.10.
Knowing =z, we can solve for y; = z;2; =129.32, z, =2, —y; = 731.78,
and so forth. A solution algorithm (programmed in Basic) and the complete
results are given in Program 1.1.

The optimal time paths {y;} and {z}} are plotted in Figure 1.4(a),
while a plot of the point (z},A;) is shown in Figure 1.4(b). The latter
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Optimal time paths and a phase plane diagram for the mine manager’s

graph is referred to as a phase plane diagram. Arrows indicate the move-

*

ment of (z;,){) over time. This simple problem can be used to illustrate
other aspects of dynamic optimization problems in general and exhaustible

resources in

chapter and

particular. We will return to this problem once more in this
again in Chapter 3. We now turn to another important tech-

nique for solving dynamic optimization problems.



